3.457 \(\int \frac{\cos ^4(c+d x)}{(a+b \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=139 \[ \frac{3 \left (2 a^2-b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^4 d \sqrt{a^2-b^2}}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}-\frac{3 a x}{b^4}-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2} \]

[Out]

(-3*a*x)/b^4 + (3*(2*a^2 - b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(b^4*Sqrt[a^2 - b^2]*d) - Co
s[c + d*x]^3/(2*b*d*(a + b*Sin[c + d*x])^2) - (3*Cos[c + d*x]*(2*a + b*Sin[c + d*x]))/(2*b^3*d*(a + b*Sin[c +
d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.208345, antiderivative size = 139, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {2693, 2863, 2735, 2660, 618, 204} \[ \frac{3 \left (2 a^2-b^2\right ) \tan ^{-1}\left (\frac{a \tan \left (\frac{1}{2} (c+d x)\right )+b}{\sqrt{a^2-b^2}}\right )}{b^4 d \sqrt{a^2-b^2}}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}-\frac{3 a x}{b^4}-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^3,x]

[Out]

(-3*a*x)/b^4 + (3*(2*a^2 - b^2)*ArcTan[(b + a*Tan[(c + d*x)/2])/Sqrt[a^2 - b^2]])/(b^4*Sqrt[a^2 - b^2]*d) - Co
s[c + d*x]^3/(2*b*d*(a + b*Sin[c + d*x])^2) - (3*Cos[c + d*x]*(2*a + b*Sin[c + d*x]))/(2*b^3*d*(a + b*Sin[c +
d*x]))

Rule 2693

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*(g*
Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Dist[(g^2*(p - 1))/(b*(m + 1)), Int[(g
*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]

Rule 2863

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*(b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x]))/(b^2*f*(m + 1)*(m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(m + 1)*(m + p +
1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*Si
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && N
eQ[m + p + 1, 0] && IntegerQ[2*m]

Rule 2735

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*x)/d
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 2660

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Dis
t[(2*e)/d, Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &&
 NeQ[a^2 - b^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cos ^4(c+d x)}{(a+b \sin (c+d x))^3} \, dx &=-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac{3 \int \frac{\cos ^2(c+d x) \sin (c+d x)}{(a+b \sin (c+d x))^2} \, dx}{2 b}\\ &=-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}+\frac{3 \int \frac{-b-2 a \sin (c+d x)}{a+b \sin (c+d x)} \, dx}{2 b^3}\\ &=-\frac{3 a x}{b^4}-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}+\frac{\left (3 \left (2 a^2-b^2\right )\right ) \int \frac{1}{a+b \sin (c+d x)} \, dx}{2 b^4}\\ &=-\frac{3 a x}{b^4}-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}+\frac{\left (3 \left (2 a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+2 b x+a x^2} \, dx,x,\tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 d}\\ &=-\frac{3 a x}{b^4}-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}-\frac{\left (6 \left (2 a^2-b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-4 \left (a^2-b^2\right )-x^2} \, dx,x,2 b+2 a \tan \left (\frac{1}{2} (c+d x)\right )\right )}{b^4 d}\\ &=-\frac{3 a x}{b^4}+\frac{3 \left (2 a^2-b^2\right ) \tan ^{-1}\left (\frac{b+a \tan \left (\frac{1}{2} (c+d x)\right )}{\sqrt{a^2-b^2}}\right )}{b^4 \sqrt{a^2-b^2} d}-\frac{\cos ^3(c+d x)}{2 b d (a+b \sin (c+d x))^2}-\frac{3 \cos (c+d x) (2 a+b \sin (c+d x))}{2 b^3 d (a+b \sin (c+d x))}\\ \end{align*}

Mathematica [B]  time = 6.2807, size = 2657, normalized size = 19.12 \[ \text{Result too large to show} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4/(a + b*Sin[c + d*x])^3,x]

[Out]

(Cos[c + d*x]^3*(-(b*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^(5/2)*(b/(a + b) - (b*Sin[c + d*x])/(a + b))^(5
/2))/(2*((a*b)/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))*(a + b*Sin[c + d*x])^2) - (-((a*b^3*(-(b/(
a - b)) - (b*Sin[c + d*x])/(a - b))^(5/2)*(b/(a + b) - (b*Sin[c + d*x])/(a + b))^(5/2))/((a^2 - b^2)*((a*b)/(a
 - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))*(a + b*Sin[c + d*x]))) - ((16*Sqrt[2]*a*b^4*(-(b/(a - b)) -
 (b*Sin[c + d*x])/(a - b))^(5/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*S
in[c + d*x])/(a - b)))/(2*b))^(5/2)*((5*(1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^
2) + (1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1)))/8 - (15*b^3*(((a - b)*(-(b/(a - b)
) - (b*Sin[c + d*x])/(a - b)))/b - ((a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2)/(3*b^2) - (Sqrt[2]*
Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a
 - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b
)])))/(32*(a - b)^3*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^3*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])
/(a - b)))/(2*b))^2)))/(5*(a - b)*(a + b)^3*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a + b)))/b]) + (((4*a
^2*b^5)/((a - b)^2*(a + b)^2) + (b^5*(2*a^2 - 3*b^2))/((a - b)^2*(a + b)^2))*((4*Sqrt[2]*(-(b/(a - b)) - (b*Si
n[c + d*x])/(a - b))^(3/2)*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c +
 d*x])/(a - b)))/(2*b))^(5/2)*((3/(4*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 +
 ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/2 + (3*b^2*(((a - b)*(-(b/(a - b)) - (b*Sin[
c + d*x])/(a - b)))/b - (Sqrt[2]*Sqrt[a - b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)
])/(Sqrt[2]*Sqrt[b])]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[b]*Sqrt[1 + ((a - b)*(-(b/(a - b))
- (b*Sin[c + d*x])/(a - b)))/(2*b)])))/(8*(a - b)^2*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b))^2*(1 + ((a - b)*
(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2)))/(3*(a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/
(a + b)))/b]) - ((-((a*b)/(a - b)) + b^2/(a - b))*(-(((-((a*b)/(a - b)) + b^2/(a - b))*(-(((-((a*b)/(a + b)) -
 b^2/(a + b))*((-2*(-((a*b)/(a + b)) - b^2/(a + b))*ArcTan[(Sqrt[(a*b)/(a + b) + b^2/(a + b)]*Sqrt[-(b/(a - b)
) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[-((a*b)/(a - b)) + b^2/(a - b)]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)
])])/(b*Sqrt[-((a*b)/(a - b)) + b^2/(a - b)]*Sqrt[(a*b)/(a + b) + b^2/(a + b)]) + (2*Sqrt[a - b]*ArcTanh[(Sqrt
[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[a + b]*Sqrt[b/(a + b) - (b*Sin[c + d*x])/(a + b)]
)])/(b*Sqrt[a + b])))/b) + (2*Sqrt[2]*(a - b)*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a + b) - (
b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2)*((Sqrt[b]*ArcSi
nh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(Sqrt[2]*Sqrt[a - b]*Sqrt[-
(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(3/2))
 + 1/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b)))))/(b*(a + b)*Sqrt[((a + b)*(b/(a + b)
 - (b*Sin[c + d*x])/(a + b)))/b])))/b) + (4*Sqrt[2]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*Sqrt[b/(a +
b) - (b*Sin[c + d*x])/(a + b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(5/2)*((3*Sqrt[
b]*ArcSinh[(Sqrt[a - b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)])/(Sqrt[2]*Sqrt[b])])/(4*Sqrt[2]*Sqrt[a -
 b]*Sqrt[-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)]*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*
b))^(5/2)) + (3/(2*(1 + ((a - b)*(-(b/(a - b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^2) + (1 + ((a - b)*(-(b/(a
- b)) - (b*Sin[c + d*x])/(a - b)))/(2*b))^(-1))/4))/((a + b)*Sqrt[((a + b)*(b/(a + b) - (b*Sin[c + d*x])/(a +
b)))/b])))/b))/b)/(((a*b)/(a - b) - b^2/(a - b))*((a*b)/(a + b) + b^2/(a + b))))/(2*((a*b)/(a - b) - b^2/(a -
b))*((a*b)/(a + b) + b^2/(a + b)))))/(d*(1 - (a + b*Sin[c + d*x])/(a - b))^(3/2)*(1 - (a + b*Sin[c + d*x])/(a
+ b))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.103, size = 560, normalized size = 4. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4/(a+b*sin(d*x+c))^3,x)

[Out]

-2/d/b^3/(1+tan(1/2*d*x+1/2*c)^2)-6/d/b^4*arctan(tan(1/2*d*x+1/2*c))*a-3/d/b^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1
/2*d*x+1/2*c)*b+a)^2*a*tan(1/2*d*x+1/2*c)^3-2/d/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2/a*tan(1/2*
d*x+1/2*c)^3-4/d/b^3/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a^2*tan(1/2*d*x+1/2*c)^2-9/d/b/(tan(1
/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*tan(1/2*d*x+1/2*c)^2-2/d*b/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x
+1/2*c)*b+a)^2/a^2*tan(1/2*d*x+1/2*c)^2-13/d/b^2/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a*tan(1/2
*d*x+1/2*c)-2/d/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2/a*tan(1/2*d*x+1/2*c)-4/d/b^3/(tan(1/2*d*x+
1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2*a^2-1/d/b/(tan(1/2*d*x+1/2*c)^2*a+2*tan(1/2*d*x+1/2*c)*b+a)^2+6/d/b^4/(
a^2-b^2)^(1/2)*arctan(1/2*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))*a^2-3/d/b^2/(a^2-b^2)^(1/2)*arctan(1/2
*(2*a*tan(1/2*d*x+1/2*c)+2*b)/(a^2-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 3.50634, size = 1515, normalized size = 10.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

[-1/4*(12*(a^3*b^2 - a*b^4)*d*x*cos(d*x + c)^2 + 4*(a^2*b^3 - b^5)*cos(d*x + c)^3 - 12*(a^5 - a*b^4)*d*x + 3*(
2*a^4 + a^2*b^2 - b^4 - (2*a^2*b^2 - b^4)*cos(d*x + c)^2 + 2*(2*a^3*b - a*b^3)*sin(d*x + c))*sqrt(-a^2 + b^2)*
log(-((2*a^2 - b^2)*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2 - 2*(a*cos(d*x + c)*sin(d*x + c) + b*cos(d
*x + c))*sqrt(-a^2 + b^2))/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)) - 6*(2*a^4*b - a^2*b^3 - b^5
)*cos(d*x + c) - 6*(4*(a^4*b - a^2*b^3)*d*x + 3*(a^3*b^2 - a*b^4)*cos(d*x + c))*sin(d*x + c))/((a^2*b^6 - b^8)
*d*cos(d*x + c)^2 - 2*(a^3*b^5 - a*b^7)*d*sin(d*x + c) - (a^4*b^4 - b^8)*d), -1/2*(6*(a^3*b^2 - a*b^4)*d*x*cos
(d*x + c)^2 + 2*(a^2*b^3 - b^5)*cos(d*x + c)^3 - 6*(a^5 - a*b^4)*d*x - 3*(2*a^4 + a^2*b^2 - b^4 - (2*a^2*b^2 -
 b^4)*cos(d*x + c)^2 + 2*(2*a^3*b - a*b^3)*sin(d*x + c))*sqrt(a^2 - b^2)*arctan(-(a*sin(d*x + c) + b)/(sqrt(a^
2 - b^2)*cos(d*x + c))) - 3*(2*a^4*b - a^2*b^3 - b^5)*cos(d*x + c) - 3*(4*(a^4*b - a^2*b^3)*d*x + 3*(a^3*b^2 -
 a*b^4)*cos(d*x + c))*sin(d*x + c))/((a^2*b^6 - b^8)*d*cos(d*x + c)^2 - 2*(a^3*b^5 - a*b^7)*d*sin(d*x + c) - (
a^4*b^4 - b^8)*d)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4/(a+b*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.15764, size = 367, normalized size = 2.64 \begin{align*} -\frac{\frac{3 \,{\left (d x + c\right )} a}{b^{4}} - \frac{3 \,{\left (\pi \left \lfloor \frac{d x + c}{2 \, \pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (a\right ) + \arctan \left (\frac{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b}{\sqrt{a^{2} - b^{2}}}\right )\right )}{\left (2 \, a^{2} - b^{2}\right )}}{\sqrt{a^{2} - b^{2}} b^{4}} + \frac{2}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )} b^{3}} + \frac{3 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 2 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 4 \, a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 9 \, a^{2} b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, b^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 13 \, a^{3} b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 2 \, a b^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 4 \, a^{4} + a^{2} b^{2}}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + a\right )}^{2} a^{2} b^{3}}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c))^3,x, algorithm="giac")

[Out]

-(3*(d*x + c)*a/b^4 - 3*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(a) + arctan((a*tan(1/2*d*x + 1/2*c) + b)/sqrt(a^
2 - b^2)))*(2*a^2 - b^2)/(sqrt(a^2 - b^2)*b^4) + 2/((tan(1/2*d*x + 1/2*c)^2 + 1)*b^3) + (3*a^3*b*tan(1/2*d*x +
 1/2*c)^3 + 2*a*b^3*tan(1/2*d*x + 1/2*c)^3 + 4*a^4*tan(1/2*d*x + 1/2*c)^2 + 9*a^2*b^2*tan(1/2*d*x + 1/2*c)^2 +
 2*b^4*tan(1/2*d*x + 1/2*c)^2 + 13*a^3*b*tan(1/2*d*x + 1/2*c) + 2*a*b^3*tan(1/2*d*x + 1/2*c) + 4*a^4 + a^2*b^2
)/((a*tan(1/2*d*x + 1/2*c)^2 + 2*b*tan(1/2*d*x + 1/2*c) + a)^2*a^2*b^3))/d